If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x2 + 5x)(25x2 + -15x + -4) = 0 Reorder the terms: (5x + 3x2)(25x2 + -15x + -4) = 0 Reorder the terms: (5x + 3x2)(-4 + -15x + 25x2) = 0 Multiply (5x + 3x2) * (-4 + -15x + 25x2) (5x * (-4 + -15x + 25x2) + 3x2 * (-4 + -15x + 25x2)) = 0 ((-4 * 5x + -15x * 5x + 25x2 * 5x) + 3x2 * (-4 + -15x + 25x2)) = 0 ((-20x + -75x2 + 125x3) + 3x2 * (-4 + -15x + 25x2)) = 0 (-20x + -75x2 + 125x3 + (-4 * 3x2 + -15x * 3x2 + 25x2 * 3x2)) = 0 (-20x + -75x2 + 125x3 + (-12x2 + -45x3 + 75x4)) = 0 Reorder the terms: (-20x + -75x2 + -12x2 + 125x3 + -45x3 + 75x4) = 0 Combine like terms: -75x2 + -12x2 = -87x2 (-20x + -87x2 + 125x3 + -45x3 + 75x4) = 0 Combine like terms: 125x3 + -45x3 = 80x3 (-20x + -87x2 + 80x3 + 75x4) = 0 Solving -20x + -87x2 + 80x3 + 75x4 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), 'x'. x(-20 + -87x + 80x2 + 75x3) = 0Subproblem 1
Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0Subproblem 2
Set the factor '(-20 + -87x + 80x2 + 75x3)' equal to zero and attempt to solve: Simplifying -20 + -87x + 80x2 + 75x3 = 0 Solving -20 + -87x + 80x2 + 75x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
x = {0}
| 27.916*x^2+1046.867*x-14686=0 | | 7x-6=4x-3 | | 76+42+95+31= | | 3t+9-2t+2=0 | | log(y)=10.3-10.2 | | 6z+18-15z+10=4z-18 | | 25-15x+5y=0 | | 14x+7y-12y+6x-2x= | | 8.6x-4.3x-0.7x= | | 0=2x^2-12x | | -8x^7+10x^7= | | 9n-18=3n+3 | | 2(2x+1)=5(3x-4) | | 2x+2y+6x+6y= | | 3(5x+1)=2(4x-2) | | 4x^3+7x^3= | | 3(5x+1)=3(4x-2) | | 2x^2+3x^3-3x-2= | | 9(-3+5)= | | x^2-8x-9y^2+16= | | 4(5-x)=3(5x-6) | | 5-3(x+3)=2(1-2x) | | 45x-5y=0 | | 2x+12x=210 | | x-10=1.5x-30 | | y=2cos(5x)-4 | | 2(7p+3)-4(3p+2)= | | y^6-4y^2+8=0 | | l^6-4l^2+8=0 | | 15x+3=8x-4 | | 2(3(x+1))=6(x-1) | | 1+6+3=2 |